
Designing controllers for the MegaVanderTest
using reinforcement learning

Nathan Lichtlé (with Kathy Jang, Eugene Vinitsky and Adit Shah)
June 21, 2023

Traffic and Autonomy Conference, Maiori, Italy

The MegaVanderTest: problem statement

Given that we

• Deploy 100 cars on the highway
• Have a lot of highway trajectory data
• Need to adhere to physical sensing and actuation constraints

How to develop a traffic-smoothing energy-reducing controller?

1

Reinforcement learning (RL) to the rescue

Pros

• Can handle a lot of data and thrives in simulated environments
• Can be given many inputs
• Neural networks have a large expressive power
• Can optimize for a desired metric over time

Cons

• Designing a good objective function is hard
• No convergence, generalization or safety guarantees
• Harder interpretability

2

MDP: Markov Decision Process

• An MDP is a model for sequential decision making under
uncertainty.

• Components of an MDPM = (S,A, T,R, γ, µ):
• State space S : Set of all possible states.
• Action space A: Set of all possible actions.
• Transition model T(s′|s, a): Probability of transitioning to state s′

given action a in state s.
• Reward function R(s, a) ∈ R: Immediate reward received after
taking action a in state s.

• Discount factor γ: Determines the importance of future rewards.
• Initial state distribution µ(s0): Probability distribution over initial
states.

3

The RL loop

Agent

Environment

action
at ∈ A

st+1

rt+1

state
st ∈ S

reward
rt ∈ R

4

Objective: Maximizing Sum of Discounted Rewards

• The policy π(a | s) is a mapping from states to actions.
• The objective in reinforcement learning is to maximize the sum
of discounted rewards.

• Sum of discounted rewards (return) over a trajectory τ :

G(τ) =
T∑
t=0

γtrt

where rt is the reward at time step t, γ ∈ [0, 1) is the discount
factor and T is the horizon (we could have T =∞).

• We want to find a policy π that maximizes the expected return:

π∗ = argmax
π

Eπ

[T∑
t=0

γtrt

]

5

Basic Policy Gradient Algorithm

• The basic policy gradient algorithm uses gradient ascent to
update the policy parameters.

• Update rule for policy parameters:

θ ← θ + α∇J(θ)

where α is the learning rate and J(θ) = Eπθ

[∑T
t=0 γ

trt
]
.

• The policy gradient theorem:

∇J(θ) = Eτ∼πθ

[T∑
t=0
∇θ log πθ(at|st)G(τ)

]

where J(θ) is the objective function, ∇J(θ) is the gradient with
respect to the policy parameters θ, and G(τ) =

∑T
t=0 γ

trt is the
return over a horizon T.

6

Trust Region Methods

• Trust region methods aim to limit policy updates to a trust
region for stability.

• The objective is to maximize the surrogate objective within the
trust region:

L(θ) = πθ(a|s)
πθold(a|s)

Aπ(s,a)

where Aπ(s,a) is the advantage function.
• The trust region constraint:

KL [πθold(a|s) ||πθ(a|s)] ≤ δ

where δ > 0 is a small threshold.
• The objective of trust region methods is to find the policy update
that solves the following constrained optimization problem:

max
θ
L(θ) subject to KL [πθold(a|s) ||πθ(a|s)] ≤ δ

7

PPO (Proximal Policy Optimization)

• PPO is an example of a trust region method.
• The PPO algorithm:

1. Collect samples in the environment using the current policy.
2. Compute advantages Aπθ (s, a) using a value function estimate.
3. Update the policy with gradient ascent using the clipped surrogate
objective to ensure a conservative policy update within the trust
region:

L(θ) = Eπθ [min (qt(θ)Aπθ (s, a), clip (qt(θ), 1− ϵ, 1+ ϵ) Aπθ (s, a))]

where qt(θ) = πθ(a|s)
πθold (a|s)

is the importance sampling ratio and ϵ > 0
controls the size of the trust region.

4. Update the value function estimate with gradient descent on the
mean square error between estimates and measured values.

5. Repeat the process until convergence.

8

Dataset of highway driving trajectories

• Team collected 10 hours / 800km of trajectory data on I-24
• Wide range of driving conditions
• We cleaned up and smoothed the data

Figure 1: Example trajectory from the dataset

9

Building a simulation

• We replay trajectories in a one-lane simulation
• AVs are controlled using RL
• Humans are modeled using the Intelligent Driver Model
• We train single-agent and evaluate with many AVs

Figure 2: Example evaluation platoon in simulation

10

Controller design: observations

We consider the following observations:

• Ego speed vavt
• Leader speed vleadt

• Space gap ht = xleadt − xavt − ℓlead where x is the vehicle front
bumper position and ℓ is vehicle length

• Target speed vSPt from a speed planner
• Downstream average speed information is collected over 500m to
1500m segments

• A highway speed profile estimate is interpolated from the
collected points

• A speed planner guide is created by smoothing the speed profile

11

Controller design: actions

The AV instantaneous acceleration at is computed as follows:

• v1: acceleration-based controller

at = πθ(vavt , vleadt ,ht)

• v2: ACC-based controller (adaptive cruise control)[
vACCt hACCt

]
= πθ(vavt , vSPt , vACCt−1,hACCt−1)

at = FACC(vACCt ,hACCt)

where the ACC model FACC is controlled by a speed setting vACCt and a
gap setting hACCt , and internally depends on vavt , vleadt , and ht.

12

Continuous Policy: Gaussian Distribution

Neural Network Architecture: 4x64 fully-connected neural network
h1 = tanh(W1s+ b1)
h2 = tanh(W2h1 + b2)
h3 = tanh(W3h2 + b3)
h4 = tanh(W4h3 + b4)

µ(s) = Wµh4 + bµ
σ(s) = exp(Wσh4 + bσ)

where θ = (W1,W2,W3,W4,Wµ,Wσ) are matrices of parameters of
appropriate dimensions.

Policy Representation:

πθ(a|s) = N (µ(s), σ(s))

where N (µ, σ) represents a Gaussian distribution with mean µ and
standard deviation σ. 13

Failsafes and gap-closing

• We wrap the controller output at with a failsafe/gap-closing
term, to stabilize training and encourage reasonable behavior:

afinalt =


amin if ∆TTC

t ≤ 6
amax if ∆TTC

t > 6 and ht ≥ max(120, 6vavt)

at otherwise
where

∆TTC
t =


ht
vdifft

if vdifft > 0

+∞ otherwise
and vdifft =

[
vavt

(
1+ 4

30

)
+ 1

]
−vleadt

and amin,amax are the minimum and maximum accelerations we
allow, respectively.

• We penalize stepping over the boundaries so the controller
learns to stay within.

14

Reward function design

The reward rt at time t is the weighted sum of several penalty terms:

• Platoon energy consumption: 1
n
∑n

i=0 Eit
• Eit is the instantaneous energy consumption at time t of vehicle i (0
being the AV).

• Eit depends on vehicle model, speed, acceleration and road grade.
• n is the number of IDM-controlled vehicles following the AV.

• Acceleration amplitude: a2t
• Following the speed planner: (vavt − vSPt)2

• Staying within gap constraints: 1
[
ht /∈ [hmint ,hmaxt]

]
• where hmint (resp. hmaxt) is the minimum (resp. maximum) gap
allowed by the failsafe (resp. gap-closing) function.

• Headway penalty: ht
vavt
1 [ht > 10 ∧ vavt > 1]

where 1 [P] = 1 if P is true, 0 otherwise.

15

Last year: the VanderTest

(a) Deployment platoon

(b) Sim-to-real comparison

(c) Energy savings in simulation 16

AVs smoothing traffic waves

Figure 4: Time-space diagrams of baseline (left) and RL (right) at a 4%
penetration rate on a simulation of 200 vehicles.

• Final control achieves around 23% energy savings in shockwaves
• Combination of low-speed and high-speed controllers

17

AV velocity profile

Figure 5: Velocity profile of an AV (blue) compared to its leader (red).

• We can observe at the scale of a single AV, how it attempts to
cut through the steep accelerations and slowdowns

18

Deployment week

• A lot of last-minute debugging on
the car directly, sitting in the parking
lot or driving on the highway

• Making fixes and adjustments,
reuploading controllers everyday

• In the end, RL controller safely and
successfully deployed on 100 cars

Figure 6: Driving with
RL control

19

